Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
PLoS One ; 19(1): e0296708, 2024.
Article in English | MEDLINE | ID: mdl-38241389

ABSTRACT

In remote communities, diagnosis of G6PD deficiency is challenging. We assessed the impact of modified test procedures and delayed testing for the point-of-care diagnostic STANDARD G6PD (SDBiosensor, RoK), and evaluated recommended cut-offs. We tested capillary blood from fingerpricks (Standard Method) and a microtainer (BD, USA; Method 1), venous blood from a vacutainer (BD, USA; Method 2), varied sample application methods (Methods 3), and used micropipettes rather than the test's single-use pipette (Method 4). Repeatability was assessed by comparing median differences between paired measurements. All methods were tested 20 times under laboratory conditions on three volunteers. The Standard Method and the method with best repeatability were tested in Indonesia and Nepal. In Indonesia 60 participants were tested in duplicate by both methods, in Nepal 120 participants were tested in duplicate by either method. The adjusted male median (AMM) of the Biosensor Standard Method readings was defined as 100% activity. In Indonesia, the difference between paired readings of the Standard and modified methods was compared to assess the impact of delayed testing. In the pilot study repeatability didn't differ significantly (p = 0.381); Method 3 showed lowest variability. One Nepalese participant had <30% activity, one Indonesian and 10 Nepalese participants had intermediate activity (≥30% to <70% activity). Repeatability didn't differ significantly in Indonesia (Standard: 0.2U/gHb [IQR: 0.1-0.4]; Method 3: 0.3U/gHb [IQR: 0.1-0.5]; p = 0.425) or Nepal (Standard: 0.4U/gHb [IQR: 0.2-0.6]; Method 3: 0.3U/gHb [IQR: 0.1-0.6]; p = 0.330). Median G6PD measurements by Method 3 were 0.4U/gHb (IQR: -0.2 to 0.7, p = 0.005) higher after a 5-hour delay compared to the Standard Method. The definition of 100% activity by the Standard Method matched the manufacturer-recommended cut-off for 70% activity. We couldn't improve repeatability. Delays of up to 5 hours didn't result in a clinically relevant difference in measured G6PD activity. The manufacturer's recommended cut-off for intermediate deficiency is conservative.


Subject(s)
Biosensing Techniques , Glucosephosphate Dehydrogenase Deficiency , Sodium Oxybate , Humans , Male , Glucosephosphate Dehydrogenase , Pilot Projects , Glucosephosphate Dehydrogenase Deficiency/diagnosis
2.
Sci Rep ; 13(1): 19779, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37957271

ABSTRACT

Colombia aims to eliminate malaria by 2030 but remains one of the highest burden countries in the Americas. Plasmodium vivax contributes half of all malaria cases, with its control challenged by relapsing parasitaemia, drug resistance and cross-border spread. Using 64 Colombian P. vivax genomes collected between 2013 and 2017, we explored diversity and selection in two major foci of transmission: Chocó and Córdoba. Open-access data from other countries were used for comparative assessment of drug resistance candidates and to assess cross-border spread. Across Colombia, polyclonal infections were infrequent (12%), and infection connectivity was relatively high (median IBD = 5%), consistent with low endemicity. Chocó exhibited a higher frequency of polyclonal infections (23%) than Córdoba (7%), although the difference was not significant (P = 0.300). Most Colombian infections carried double pvdhfr (95%) and single pvdhps (71%) mutants, but other drug resistance mutations were less prevalent (< 10%). There was no evidence of selection at the pvaat1 gene, whose P. falciparum orthologue has recently been implicated in chloroquine resistance. Global population comparisons identified other putative adaptations. Within the Americas, low-level connectivity was observed between Colombia and Peru, highlighting potential for cross-border spread. Our findings demonstrate the potential of molecular data to inform on infection spread and adaptation.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria, Vivax , Humans , Plasmodium vivax/genetics , Antimalarials/pharmacology , Colombia/epidemiology , Malaria, Vivax/epidemiology , Malaria, Vivax/drug therapy , Protozoan Proteins/genetics , Drug Resistance/genetics , Genomics
3.
Sci Rep ; 13(1): 20788, 2023 11 27.
Article in English | MEDLINE | ID: mdl-38012191

ABSTRACT

Ethiopia has the greatest burden of Plasmodium vivax in Africa, but little is known about the epidemiological landscape of parasites across the country. We analysed the genomic diversity of 137 P. vivax isolates collected nine Ethiopian districts from 2012 to 2016. Signatures of selection were detected by cross-country comparisons with isolates from Thailand (n = 104) and Indonesia (n = 111), representing regions with low and high chloroquine resistance respectively. 26% (35/137) of Ethiopian infections were polyclonal, and 48.5% (17/35) of these comprised highly related clones (within-host identity-by-descent > 25%), indicating frequent co-transmission and superinfection. Parasite gene flow between districts could not be explained entirely by geographic distance, with economic and cultural factors hypothesised to have an impact on connectivity. Amplification of the duffy binding protein gene (pvdbp1) was prevalent across all districts (16-75%). Cross-population haplotype homozygosity revealed positive selection in a region proximal to the putative chloroquine resistance transporter gene (pvcrt-o). An S25P variant in amino acid transporter 1 (pvaat1), whose homologue has recently been implicated in P. falciparum chloroquine resistance evolution, was prevalent in Ethiopia (96%) but not Thailand or Indonesia (35-53%). The genomic architecture in Ethiopia highlights circulating variants of potential public health concern in an endemic setting with evidence of stable transmission.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria, Vivax , Humans , Plasmodium vivax , Malaria, Vivax/parasitology , Ethiopia/epidemiology , Chloroquine/pharmacology , Chloroquine/therapeutic use , Malaria, Falciparum/parasitology , Genomics , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Antimalarials/pharmacology , Antimalarials/therapeutic use , Drug Resistance/genetics , Plasmodium falciparum/metabolism
4.
Lancet ; 402(10417): 2101-2110, 2023 12 02.
Article in English | MEDLINE | ID: mdl-37979594

ABSTRACT

BACKGROUND: In areas co-endemic for Plasmodium vivax and Plasmodium falciparum there is an increased risk of P vivax parasitaemia following P falciparum malaria. Radical cure is currently only recommended for patients presenting with P vivax malaria. Expanding the indication for radical cure to patients presenting with P falciparum malaria could reduce their risk of subsequent P vivax parasitaemia. METHODS: We did a multicentre, open-label, superiority randomised controlled trial in five health clinics in Bangladesh, Indonesia, and Ethiopia. In Bangladesh and Indonesia, patients were excluded if they were younger than 1 year, whereas in Ethiopia patients were excluded if they were younger than 18 years. Patients with uncomplicated P falciparum monoinfection who had fever or a history of fever in the 48 h preceding clinic visit were eligible for enrolment and were required to have a glucose-6-dehydrogenase (G6PD) activity of 70% or greater. Patients received blood schizontocidal treatment (artemether-lumefantrine in Ethiopia and Bangladesh and dihydroartemisinin-piperaquine in Indonesia) and were randomly assigned (1:1) to receive either high-dose short-course oral primaquine (intervention arm; total dose 7 mg/kg over 7 days) or standard care (standard care arm; single dose oral primaquine of 0·25 mg/kg). Random assignment was done by an independent statistician in blocks of eight by use of sealed envelopes. All randomly assigned and eligible patients were included in the primary and safety analyses. The per-protocol analysis excluded those who did not complete treatment or had substantial protocol violations. The primary endpoint was the incidence risk of P vivax parasitaemia on day 63. This trial is registered at ClinicalTrials.gov, NCT03916003. FINDINGS: Between Aug 18, 2019, and March 14, 2022, a total of 500 patients were enrolled and randomly assigned, and 495 eligible patients were included in the intention-to-treat analysis (246 intervention and 249 control). The incidence risk of P vivax parasitaemia at day 63 was 11·0% (95% CI 7·5-15·9) in the standard care arm compared with 2·5% (1·0-5·9) in the intervention arm (hazard ratio 0·20, 95% CI 0·08-0·51; p=0·0009). The effect size differed with blood schizontocidal treatment and site. Routine symptom reporting on day 2 and day 7 were similar between groups. In the first 42 days, there were a total of four primaquine-related adverse events reported in the standard care arm and 26 in the intervention arm; 132 (92%) of all 143 adverse events were mild. There were two serious adverse events in the intervention arm, which were considered unrelated to the study drug. None of the patients developed severe anaemia (defined as haemoglobin <5 g/dL). INTERPRETATION: In patients with a G6PD activity of 70% or greater, high-dose short-course primaquine was safe and relatively well tolerated and reduced the risk of subsequent P vivax parasitaemia within 63 days by five fold. Universal radical cure therefore potentially offers substantial clinical, public health, and operational benefits, but these benefits will vary with endemic setting. FUNDING: Australian Academy of Science Regional Collaborations Program, Bill & Melinda Gates Foundation, and National Health and Medical Research Council.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria, Vivax , Malaria , Humans , Primaquine/adverse effects , Antimalarials/adverse effects , Plasmodium vivax , Artemether/pharmacology , Artemether/therapeutic use , Artemether, Lumefantrine Drug Combination/therapeutic use , Australia , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Malaria, Vivax/drug therapy , Malaria, Vivax/epidemiology , Malaria/drug therapy , Plasmodium falciparum , Parasitemia/drug therapy , Parasitemia/epidemiology
5.
Antimicrob Agents Chemother ; 67(7): e0161022, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37314336

ABSTRACT

Increasing reports of resistance to a frontline malaria blood-stage treatment, chloroquine (CQ), raises concerns for the elimination of Plasmodium vivax. The absence of an effective molecular marker of CQ resistance in P. vivax greatly constrains surveillance of this emerging threat. A recent genetic cross between CQ sensitive (CQS) and CQ resistant (CQR) NIH-1993 strains of P. vivax linked a moderate CQR phenotype with two candidate markers in P. vivax CQ resistance transporter gene (pvcrt-o): MS334 and In9pvcrt. Longer TGAAGH motif lengths at MS334 were associated with CQ resistance, as were shorter motifs at the In9pvcrt locus. In this study, high-grade CQR clinical isolates of P. vivax from a low endemic setting in Malaysia were used to investigate the association between the MS334 and In9pvcrt variants and treatment efficacy. Among a total of 49 independent monoclonal P. vivax isolates assessed, high-quality MS334 and In9pvcrt sequences could be derived from 30 (61%) and 23 (47%), respectively. Five MS334 and six In9pvcrt alleles were observed, with allele frequencies ranging from 2 to 76% and 3 to 71%, respectively. None of the clinical isolates had the same variant as the NIH-1993 CQR strain, and none of the variants were associated with CQ treatment failure (all P > 0.05). Multi-locus genotypes (MLGs) at 9 neutral microsatellites revealed a predominant P. vivax strain (MLG6) accounting for 52% of Day 0 infections. The MLG6 strain comprised equal proportions of CQS and CQR infections. Our study reveals complexity in the genetic basis of CQ resistance in the Malaysian P. vivax pre-elimination setting and suggests that the proposed pvcrt-o MS334 and In9pvcrt markers are not reliable markers of CQ treatment efficacy in this setting. Further studies are needed in other endemic settings, applying hypothesis-free genome-wide approaches, and functional approaches to understand the biological impact of the TGAAGH repeats linked to CQ response in a cross are warranted to comprehend and track CQR P. vivax.


Subject(s)
Antimalarials , Malaria, Vivax , Humans , Chloroquine/pharmacology , Chloroquine/therapeutic use , Plasmodium vivax/genetics , Antimalarials/pharmacology , Antimalarials/therapeutic use , Malaysia , Drug Resistance/genetics , Malaria, Vivax/epidemiology , Alleles , Protozoan Proteins/genetics , Protozoan Proteins/therapeutic use
6.
Pediatr Investig ; 7(1): 13-22, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36967743

ABSTRACT

Importance: In remote communities of the Northern Territory, Australia, children experience high rates of otitis media (OM), commonly caused by non-typeable Haemophilus influenzae (NTHi). Few data exist on antibiotic susceptibility of NTHi from OM. Objective: To determine whether population-level nasopharyngeal NTHi antibiotic susceptibility data could inform antibiotic treatment for OM. Methods: NTHi isolates (n = 92) collected from ear discharge between 2003 and 2013 were selected to time- and age-match NTHi isolates from the nasopharyngeal carriage (n = 95). Antimicrobial susceptibility were tested. Phylogenomic trees and a genome-wide association study (GWAS) were performed to determine the similarity of nasopharyngeal and ear isolates at a population level. Results: Among 174 NTHi isolates available for antimicrobial susceptibility testing, 10.3% (18/174) were resistant to ampicillin and 9.2% (16/174) were resistant to trimethoprim-sulfamethoxazole. Small numbers of isolates (≤3) were resistant to tetracycline, chloramphenicol, or amoxicillin-clavulanic acid. There was no statistical difference in the proportion of ampicillin-resistant (P = 0.11) or trimethoprim-sulfamethoxazole-resistant isolates (P = 0.70) between ear discharge and nasopharynx-derived NTHi isolates. Three multi-drug resistant NTHi isolates were identified. Phylogenomic trees showed no clustering of 187 Haemophilus influenzae isolates based on anatomical niche (nasopharynx or ear discharge), and no genetic variations that distinguished NTHi derived from ear discharge and nasopharyngeal carriage were evident in the GWAS. Interpretation: In this population-level study, nasopharyngeal and ear discharge isolates did not represent distinct microbial populations. These results support tracking of population-level nasopharyngeal NTHi antibiotic resistance patterns to inform clinical management of OM in this population.

7.
Clin Trials ; 20(3): 237-241, 2023 06.
Article in English | MEDLINE | ID: mdl-36772825

ABSTRACT

BACKGROUND: The COVID-19 pandemic and resulting restrictions, particularly travel restrictions, have had significant impact on the conduct of global clinical trials. Our clinical trials programme, which relied on in-person visits for training, monitoring and capacity building across nine low- and middle-income countries, had to adapt to those unprecedented operational challenges. We report the adaptation of our working model with a focus on the operational areas of training, monitoring and cross-site collaboration. THE NEW WORKING MODEL: Adaptations include changing training strategies from in-person site visits with three or four team members to a multi-pronged virtual approach, with generic online training for good clinical practice, the development of a library of study-specific training videos, and interactive virtual training sessions, including practical laboratory-focused training sessions. We also report changes from in-person monitoring to remote monitoring as well as the development of a more localized network of clinical trial monitors to support hybrid models with in-person and remote monitoring depending on identified risks at each site. We established a virtual network across different trial and study sites with the objective to further build capacity for good clinical practice-compliant antimalarial trials and foster cross-country and cross-study site collaboration. CONCLUSION: The forced adaptation of these new strategies has come with advantages that we did not envisage initially. This includes improved, more frequent engagement through the established network with opportunities for increased south-to-south support and a substantially reduced carbon footprint and budget savings. Our new approach is challenging for study sites with limited prior experience but this can be overcome with hybrid models. Capacity building for laboratory-based work remains difficult using a virtual environment. The changes to our working model are likely to last, even after the end of the pandemic, providing a more sustainable and equitable approach to our research.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Pandemics
8.
Am J Trop Med Hyg ; 108(1): 76-80, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36509054

ABSTRACT

Primaquine prevents relapses of Plasmodium vivax malaria but can cause severe hemolysis in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency. The clinical and laboratory features of this outcome are usually confounded by the clinical and hemolytic effects of concomitant malaria. We describe a case of severe hemolysis occurring after a total dose of 2.04 mg/kg of primaquine used for prophylaxis in a young, G6PD-deficient (Kaiping variant), Australian man without malaria. During acute hemolysis, he had markedly elevated urinary beta-2-microglobulin, suggestive of renal tubular injury (a well-recognized complication of primaquine-induced hemolysis). He also had albuminuria and significantly increased excretion of glycocalyx metabolites, suggestive of glomerular glycocalyx degradation and injury. We show that regularly dosed paracetamol given for its putative renoprotective effect is safe in the context of severe oxidative hemolysis. Acute drug-induced hemolysis transiently increases G6PD activity. Cases such as this improve our understanding of primaquine-induced hemolysis and ultimately will help facilitate widespread safe and effective use of this critically important drug.


Subject(s)
Antimalarials , Glucosephosphate Dehydrogenase Deficiency , Malaria, Vivax , Malaria , Male , Humans , Primaquine/adverse effects , Antimalarials/adverse effects , Hemolysis , Australia , Malaria/drug therapy , Glucosephosphate Dehydrogenase Deficiency/complications , Malaria, Vivax/complications , Malaria, Vivax/drug therapy , Malaria, Vivax/prevention & control
9.
Trials ; 23(1): 416, 2022 May 18.
Article in English | MEDLINE | ID: mdl-35585641

ABSTRACT

BACKGROUND: Plasmodium vivax forms dormant liver stages that can reactivate weeks or months following an acute infection. Recurrent infections are often associated with a febrile illness and can cause a cumulative risk of severe anaemia, direct and indirect mortality, and onward transmission of the parasite. There is an increased risk of P. vivax parasitaemia following falciparum malaria suggesting a rationale for universal use of radically curative treatment in patients with P. falciparum malaria even in the absence of detectable P. vivax parasitaemia in areas that are co-endemic for both species. METHODS: This is a multicentre, health care facility-based, randomized, controlled, open-label trial in Bangladesh, Indonesia and Ethiopia. Patients with uncomplicated falciparum malaria, G6PD activity of ≥70% of the adjusted male median (AMM) and haemoglobin levels ≥8g/dl are recruited into the study and randomized to either receive standard schizonticidal treatment plus 7-day high dose primaquine (total dose 7mg/kg) or standard care in a 1:1 ratio. Patients are followed up weekly until day 63. The primary endpoint is the incidence risk of any P. vivax parasitemia on day 63. Secondary endpoints include incidence risk on day 63 of symptomatic P. vivax malaria and the risk of any P. falciparum parasitaemia. Secondary safety outcomes include the proportion of adverse events and serious adverse events, the incidence risk of severe anaemia (Hb<5g/dl and <7g/dl) and/or the risk for blood transfusion, the incidence risk of ≥ 25% fall in haemoglobin with and without haemoglobinuria, and the incidence risk of ≥ 25% fall in haemoglobin to under 7g/dl with and without haemoglobinuria. DISCUSSION: This study evaluates the potential benefit of a universal radical cure for both P. vivax and P. falciparum in different endemic locations. If found safe and effective universal radical cure could represent a cost-effective approach to clear otherwise unrecognised P. vivax infections and hence accelerate P. vivax elimination. TRIAL REGISTRATION: NCT03916003 . Registered on 12 April 2019.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria, Vivax , Malaria , Antimalarials/adverse effects , Hemoglobinuria/chemically induced , Hemoglobinuria/drug therapy , Humans , Malaria/drug therapy , Malaria, Falciparum/diagnosis , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Malaria, Vivax/diagnosis , Malaria, Vivax/drug therapy , Malaria, Vivax/epidemiology , Male , Plasmodium falciparum , Plasmodium vivax , Primaquine/adverse effects
10.
BMC Res Notes ; 15(1): 76, 2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35193663

ABSTRACT

OBJECTIVE: Glucose-6-phosphate dehydrogenase (G6PD) deficiency offers some protection against malaria; however, the degree of protection is poorly described and likely to vary with G6PD genotype and Plasmodium species. We present a novel approach to quantify the differential invasion rates of P. falciparum between G6PD deficient and normal red blood cells (RBCs) in an ex vivo model. A flow-cytometry based assay was developed to distinguish G6PD deficient and normal, parasitized and non-parasitized RBCs within the same sample. Venous blood collected from a G6PD heterozygous female was infected and cultured ex vivo with a laboratory strain of P. falciparum (FC27). RESULTS: Aliquots of infected blood were assayed at schizont and subsequent synchronized ring stages. At schizont stage, 84.9% of RBCs were G6PD deficient of which 0.4% were parasitized compared to 2.0% of normal RBCs. In the subsequent ring stage, 90.4% of RBCs were deficient and 0.2% of deficient and 0.9% of normal cells respectively were parasitized. The pooled Odds Ratio for a deficient RBC to be parasitized was 0.2 (95% confidence interval: 0.18-0.22, p < 0.001) compared to a normal cell. Further studies are warranted to explore preferential parasitization with different G6PD variants and Plasmodium species.


Subject(s)
Glucosephosphate Dehydrogenase Deficiency , Glucosephosphate Dehydrogenase , Malaria, Falciparum , Female , Glucosephosphate Dehydrogenase/genetics , Glucosephosphate Dehydrogenase Deficiency/genetics , Humans , Malaria, Falciparum/genetics , Plasmodium falciparum
11.
Article in English | MEDLINE | ID: mdl-34193398

ABSTRACT

Drug resistant Plasmodium parasites are a major threat to malaria control and elimination. After reports of high levels of multidrug resistant P. falciparum and P. vivax in Indonesia, in 2005, the national first-line treatment policy for uncomplicated malaria was changed in March 2006, to dihydroartemisinin-piperaquine against all species. This study assessed the temporal trends in ex vivo drug susceptibility to chloroquine (CQ) and piperaquine (PIP) for both P. falciparum and P. vivax clinical isolates collected between 2004 and 2018, by using schizont maturation assays, and genotyped a subset of isolates for known and putative molecular markers of CQ and PIP resistance by using Sanger and next generation whole genome sequencing. The median CQ IC50 values varied significantly between years in both Plasmodium species, but there was no significant trend over time. In contrast, there was a significant trend for increasing PIP IC50s in both Plasmodium species from 2010 onwards. Whereas the South American CQ resistant 7G8 pfcrt SVMNT isoform has been fixed since 2005 in the study area, the pfmdr1 86Y allele frequencies decreased and became fixed at the wild-type allele in 2015. In P. vivax isolates, putative markers of CQ resistance (no pvcrt-o AAG (K10) insertion and pvmdr1 Y967F and F1076L) were fixed at the mutant alleles since 2005. None of the putative PIP resistance markers were detected in P. falciparum. The ex vivo drug susceptibility and molecular analysis of CQ and PIP efficacy for P. falciparum and P. vivax after 12 years of intense drug pressure with DHP suggests that whilst the degree of CQ resistance appears to have been sustained, there has been a slight decline in PIP susceptibility, although this does not appear to have reached clinically significant levels. The observed decreasing trend in ex vivo PIP susceptibility highlights the importance of ongoing surveillance.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Antimalarials/pharmacology , Antimalarials/therapeutic use , Artemisinins/pharmacology , Artemisinins/therapeutic use , Chloroquine/pharmacology , Chloroquine/therapeutic use , Drug Resistance/genetics , Humans , Indonesia/epidemiology , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Plasmodium falciparum/genetics , Plasmodium vivax/genetics , Protozoan Proteins/genetics , Quinolines
12.
PLoS Negl Trop Dis ; 14(5): e0008295, 2020 05.
Article in English | MEDLINE | ID: mdl-32379762

ABSTRACT

Genetic epidemiology can provide important insights into parasite transmission that can inform public health interventions. The current study compared long-term changes in the genetic diversity and structure of co-endemic Plasmodium falciparum and P. vivax populations. The study was conducted in Papua Indonesia, where high-grade chloroquine resistance in P. falciparum and P. vivax led to a universal policy of Artemisinin-based Combination Therapy (ACT) in 2006. Microsatellite typing and population genetic analyses were undertaken on available isolates collected between 2004 and 2017 from patients with uncomplicated malaria (n = 666 P. falciparum and n = 615 P. vivax). The proportion of polyclonal P. falciparum infections fell from 28% (38/135) before policy change (2004-2006) to 18% (22/125) at the end of the study (2015-2017); p<0.001. Over the same period, polyclonal P. vivax infections fell from 67% (80/119) to 35% (33/93); p<0.001. P. falciparum strains persisted for up to 9 years compared to 3 months for P. vivax, reflecting higher rates of outbreeding in the latter. Sub-structure was observed in the P. falciparum population, but not in P. vivax, confirming different patterns of outbreeding. The P. falciparum population exhibited 4 subpopulations that changed in frequency over time. Notably, a sharp rise was observed in the frequency of a minor subpopulation (K2) in the late post-ACT period, accounting for 100% of infections in late 2016-2017. The results confirm epidemiological evidence of reduced P. falciparum and P. vivax transmission over time. The smaller change in P. vivax population structure is consistent with greater outbreeding associated with relapsing infections and highlights the need for radical cure to reduce recurrent infections. The study emphasizes the challenge in disrupting P. vivax transmission and demonstrates the potential of molecular data to inform on the impact of public health interventions.


Subject(s)
Antimalarials/therapeutic use , Artemisinins/therapeutic use , Epidemiological Monitoring , Lactones/therapeutic use , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Malaria, Vivax/drug therapy , Malaria, Vivax/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Drug Therapy, Combination/methods , Female , Genetic Variation , Genotyping Techniques , Humans , Indonesia , Male , Microsatellite Repeats , Middle Aged , Molecular Epidemiology , Plasmodium falciparum/classification , Plasmodium falciparum/genetics , Plasmodium falciparum/isolation & purification , Plasmodium vivax/classification , Plasmodium vivax/genetics , Plasmodium vivax/isolation & purification , Young Adult
13.
J Infect Dis ; 220(11): 1738-1749, 2019 10 22.
Article in English | MEDLINE | ID: mdl-30668735

ABSTRACT

The Horn of Africa harbors the largest reservoir of Plasmodium vivax in the continent. Most of sub-Saharan Africa has remained relatively vivax-free due to a high prevalence of the human Duffy-negative trait, but the emergence of strains able to invade Duffy-negative reticulocytes poses a major public health threat. We undertook the first population genomic investigation of P. vivax from the region, comparing the genomes of 24 Ethiopian isolates against data from Southeast Asia to identify important local adaptions. The prevalence of the Duffy binding protein amplification in Ethiopia was 79%, potentially reflecting adaptation to Duffy negativity. There was also evidence of selection in a region upstream of the chloroquine resistance transporter, a putative chloroquine-resistance determinant. Strong signals of selection were observed in genes involved in immune evasion and regulation of gene expression, highlighting the need for a multifaceted intervention approach to combat P. vivax in the region.


Subject(s)
Genotype , Malaria, Vivax/parasitology , Plasmodium vivax/genetics , Plasmodium vivax/isolation & purification , Selection, Genetic , Adaptation, Biological , Adolescent , Animals , Child , Child, Preschool , Ethiopia , Female , Humans , Infant , Infant, Newborn , Male , Plasmodium vivax/classification , Prevalence
14.
J Microbiol Methods ; 137: 3-5, 2017 06.
Article in English | MEDLINE | ID: mdl-28342745

ABSTRACT

The efficacy of chocolate agar, versus bacitracin, vancomycin, clindamycin, chocolate agar (BVCCA) for the isolation of non-typeable Haemophilus influenzae (NTHi) from nasopharyngeal swabs was determined. BVCCA cultured NTHi from 97.3% of NTHi-positive swabs, compared to 87.1% for chocolate agar. To maximise culture sensitivity, the use of both media is recommended.


Subject(s)
Bacteriological Techniques/methods , Culture Media , Haemophilus influenzae/cytology , Nasopharynx/microbiology , Anti-Bacterial Agents/pharmacology , Haemophilus Infections/microbiology , Haemophilus influenzae/drug effects , Haemophilus influenzae/isolation & purification , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...